An extension of A. Ostrowski's Theorem on the round-off stability of iterations
Autor: | Jacek Jachymski |
---|---|
Rok vydání: | 1997 |
Předmět: |
Mathematics::Functional Analysis
Pure mathematics Applied Mathematics General Mathematics Injective metric space Mathematical analysis Fixed-point theorem Intrinsic metric Convex metric space Metric space Discrete Mathematics and Combinatorics Metric map Metric differential Mathematics Ostrowski's theorem |
Zdroj: | Aequationes Mathematicae. 53:242-253 |
ISSN: | 1420-8903 0001-9054 |
DOI: | 10.1007/bf02215974 |
Popis: | A. M. Ostrowski established the stability of the procedure of successive approximations for Banach contractive maps. In this paper we generalize the above result by using a more general contractive definition introduced by F. Browder. Further, we study the case of maps on metrically convex metric spaces and compact metric spaces, obtaining results relative to fixed point theorems of D. W. Boyd and J. S. W. Wong, and M. Edelstein. Finally, as a by-product of our basic lemma, we extend a recent result of T. Vidalis concerning the convergence of an iteration procedure involving an infinite sequence of maps. |
Databáze: | OpenAIRE |
Externí odkaz: |