On Convergence of Minmod-Type Schemes

Autor: Bojan Popov, Ognian Trifonov, Sergei Konyagin
Rok vydání: 2005
Předmět:
Zdroj: SIAM Journal on Numerical Analysis. 42:1978-1997
ISSN: 1095-7170
0036-1429
DOI: 10.1137/s0036142903423861
Popis: A class of nonoscillatory numerical methods for solving nonlinear scalar conservation laws in one space dimension is considered. This class of methods contains the classical Lax--Friedrichs and the second-order Nessyahu--Tadmor schemes. In the case of linear flux, new l2 stability results and error estimates for the methods are proved. Numerical experiments confirm that these methods are one-sided l2 stable for convex flux instead of the usual Lip+ stability.
Databáze: OpenAIRE