On Convergence of Minmod-Type Schemes
Autor: | Bojan Popov, Ognian Trifonov, Sergei Konyagin |
---|---|
Rok vydání: | 2005 |
Předmět: | |
Zdroj: | SIAM Journal on Numerical Analysis. 42:1978-1997 |
ISSN: | 1095-7170 0036-1429 |
DOI: | 10.1137/s0036142903423861 |
Popis: | A class of nonoscillatory numerical methods for solving nonlinear scalar conservation laws in one space dimension is considered. This class of methods contains the classical Lax--Friedrichs and the second-order Nessyahu--Tadmor schemes. In the case of linear flux, new l2 stability results and error estimates for the methods are proved. Numerical experiments confirm that these methods are one-sided l2 stable for convex flux instead of the usual Lip+ stability. |
Databáze: | OpenAIRE |
Externí odkaz: |