An Existence Result for a Nonlinear Volterra Integral Equation in a Hilbert Space
Autor: | Gustaf Gripenberg |
---|---|
Rok vydání: | 1978 |
Předmět: | |
Zdroj: | SIAM Journal on Mathematical Analysis. 9:793-805 |
ISSN: | 1095-7154 0036-1410 |
DOI: | 10.1137/0509061 |
Popis: | We study equations of the form \[u(t) + \int_0^t {a(t - s)gu(s)ds \ni f(t)} ,\quad t \geqq 0\] on a real Hilbert space H. The unknown function is u and a, g, f are given. It is assumed that the kernel a is operator-valued (real-valued as a special case) and g is an arbitrary maximal monotone operator in H. The method can also be applied to time-varying nonlinearity. We prove an existence and uniqueness result that extends earlier results by Londen and Barbu. Finally an application is given. |
Databáze: | OpenAIRE |
Externí odkaz: |