Why Non-Uniform Density Suppresses the Precessing Vortex Core

Autor: Kilian Oberleithner, Steffen Terhaar, Lothar Rukes, Christian Oliver Paschereit
Rok vydání: 2013
Předmět:
Zdroj: Volume 1B: Combustion, Fuels and Emissions.
DOI: 10.1115/gt2013-95509
Popis: Isothermal swirling jets undergoing vortex breakdown are known to be susceptible to self-excited flow oscillations. They manifest in a precessing vortex core and synchronized growth of large-scale vortical structures. Recent theoretical studies associate these dynamics with the onset of a global hydrodynamic instability mode. These global modes also emerge in reacting flows, thereby crucially affecting the mixing characteristics and the flame dynamics. It is, however, observed that these self-excited flow oscillations are often suppressed in the reacting flow, while they are clearly present at isothermal conditions. This study provides strong evidence that the suppression of the precessing vortex core is caused by density stratification created by the flame. This mechanism is revealed by considering two reacting flow configurations: The first configuration represents a detached steam-diluted natural gas swirl-stabilized flame featuring a strong precessing vortex core. The second represents a natural gas swirl-stabilized flame anchoring near the combustor inlet, which does not exhibit self-excited oscillations. Experiments are conducted in a generic combustor test rig and the flow dynamics are captured using PIV and LDA. The corresponding density fields are approximated from the seeding density using a quantitative light sheet technique. The experimental results are compared to the global instability properties derived from hydrodynamic linear stability theory. Excellent agreement between the theoretically derived global mode frequency and measured precession frequency provide sufficient evidence to conclude that the self-excited oscillations are, indeed, driven by a global hydrodynamic instability. The effect of the density field on the global instability is studied explicitly by performing the analysis with and without density stratification. It turns out that the significant change on instability is caused by the radial density gradients in the inner recirculation zone and not by the change of the mean velocity field. The present work provides a theoretical framework to analyze the global hydrodynamic instability of realistic combustion configurations. It allows relating the flame position and the resulting density field to the emergence of a precessing vortex core.
Databáze: OpenAIRE