On the normal approximation of a negative binomial random sum

Autor: Jonas Kazys Sunklodas
Rok vydání: 2015
Předmět:
Zdroj: Lithuanian Mathematical Journal. 55:150-158
ISSN: 1573-8825
0363-1672
DOI: 10.1007/s10986-015-9271-2
Popis: We present upper bounds of the L s norms of the normal approximation for random sums of independent identically distributed random variables X 1 ,X 2 , . . . with zero means and finite absolute moments of order 2 + δ, 0 < δ ≤ 1, where the number of summands N is a negative binomial random variable with parameters r = 1, 2, . . . and 0 < p < 1, independent of the summands X 1 ,X 2 , . . . . The upper bounds obtained are of order r −δ/2 for all 1 ≤ s ≤ ∞. MSC: 60F05
Databáze: OpenAIRE