On the normal approximation of a negative binomial random sum
Autor: | Jonas Kazys Sunklodas |
---|---|
Rok vydání: | 2015 |
Předmět: | |
Zdroj: | Lithuanian Mathematical Journal. 55:150-158 |
ISSN: | 1573-8825 0363-1672 |
DOI: | 10.1007/s10986-015-9271-2 |
Popis: | We present upper bounds of the L s norms of the normal approximation for random sums of independent identically distributed random variables X 1 ,X 2 , . . . with zero means and finite absolute moments of order 2 + δ, 0 < δ ≤ 1, where the number of summands N is a negative binomial random variable with parameters r = 1, 2, . . . and 0 < p < 1, independent of the summands X 1 ,X 2 , . . . . The upper bounds obtained are of order r −δ/2 for all 1 ≤ s ≤ ∞. MSC: 60F05 |
Databáze: | OpenAIRE |
Externí odkaz: |