Jointly Discovering Visual Objects and Spoken Words from Raw Sensory Input

Autor: Galen Chuang, Antonio Torralba, Adrià Recasens, Dídac Surís, David Harwath, James Glass
Rok vydání: 2018
Předmět:
Zdroj: Computer Vision – ECCV 2018 ISBN: 9783030012304
ECCV (6)
DOI: 10.1007/978-3-030-01231-1_40
Popis: In this paper, we explore neural network models that learn to associate segments of spoken audio captions with the semantically relevant portions of natural images that they refer to. We demonstrate that these audio-visual associative localizations emerge from network-internal representations learned as a by-product of training to perform an image-audio retrieval task. Our models operate directly on the image pixels and speech waveform, and do not rely on any conventional supervision in the form of labels, segmentations, or alignments between the modalities during training. We perform analysis using the Places 205 and ADE20k datasets demonstrating that our models implicitly learn semantically-coupled object and word detectors.
Databáze: OpenAIRE