Abstract 2320: Avadomide (CC-122) increases effector function and reverses exhaustion in chronically stimulated lisocabtagene maraleucel anti-CD19 CAR T drug product

Autor: Heidi K. Jessup, Ruth Salmon, Jim Qin, Evan Paul Thomas, Melissa Works, Oleksandr Baturevych, Aye T. Chen, Michael Ports, Yue Jiang, Neha Soni
Rok vydání: 2019
Předmět:
Zdroj: Cancer Research. 79:2320-2320
ISSN: 1538-7445
0008-5472
Popis: Lisocabtagene maraleucel (liso-cel) is an investigational drug product composed of autologous CD8+ and CD4+ T cells expressing a CD19-specific chimeric antigen receptor (CAR), being evaluated in clinical trials for treatment of B cell malignancies. The CELMoD CC-122 is being evaluated in non-Hodgkin lymphoma (NHL) and can augment T cell function through Cereblon-mediated degradation of Ikaros and Aiolos. Combination approaches aimed at enhancing CAR T cell function may increase the rate, depth, and durability of clinical responses. Here we report pre-clinical results supporting the potential combination of CC-122 an liso-cel. To determine potentiating effects of CC-122 following acute activation (anti-idiotypic Ab or CD19+ targets), T cells expressing the CAR of liso-cel were cultured with CC-122 and assessed for intracellular signaling, cytolytic activity, cytokine production, and activation marker expression. CC-122 significantly increased NFκB, Nur77, and STAT5 as well as effector cytokine production and activation marker expression. Activation-induced exhaustion of CAR T may decrease durable responses in patients. We developed a chronic stimulation assay to render CAR T cells hypofunctional (reduced cytolysis and IL-2 secretion) and examined whether enhanced activation mediated by CC-122 would exhaust the CD19-directed CAR T cells more rapidly. CC-122 was added in one of two regimens: during chronic stimulation (“concurrent”) or during re-challenge (“rescue”). Effects on exhaustion in “concurrent” or “rescue” cultures were evaluated, including by RNAseq and measuring of effector function in re-challenge assays with CD19+ targets. Surprisingly, “concurrent” CC-122 partially reversed a gene signature associated with CAR T cell hypofunctionality and preserved more effector function relative to controls. In “rescue” assays, CC-122 dose-dependently increased cytokine production and restored cytolytic function of exhausted CAR T cells upon re-challenge with CD19+ tumor spheroids. In a disseminated tumor xenograft model, concurrent or delayed dosing of CC-122, in combination with two sub-curative doses of liso-cel, significantly increased median survival by 30 to 40 days. In some cases, survival endpoints were not reached with the combination. Taken together, CC-122 treatment of CD19-directed CAR T cells was shown to enhance CAR T activation in acute stimulation assays; limit CAR T exhaustion onset during chronic stimulation as assessed by gene expression; and reverse an exhausted, hypofunctional CAR T state induced by chronic stimulation. The data suggest that liso-cel pharmacologic activity may both be enhanced and extended by this combinatorial approach. These findings support an ongoing clinical investigation evaluating the addition of CC-122 to liso-cel in patients with R/R, aggressive NHL (NCT03310619). Citation Format: Heidi K. Jessup, Evan P. Thomas, Jim S. Qin, Yue Jiang, Oleksandr Baturevych, Neha Soni, Aye T. Chen, Ruth A. Salmon, Melissa G. Works, Michael O. Ports. Avadomide (CC-122) increases effector function and reverses exhaustion in chronically stimulated lisocabtagene maraleucel anti-CD19 CAR T drug product [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 2320.
Databáze: OpenAIRE