Uniqueness of convex ancient solutions to mean curvature flow in $${\mathbb {R}}^3$$ R 3
Autor: | Kyeongsu Choi, Simon Brendle |
---|---|
Rok vydání: | 2019 |
Předmět: |
Mean curvature flow
Pure mathematics General Mathematics 010102 general mathematics Dimension (graph theory) Regular polygon Ricci flow 01 natural sciences 0103 physical sciences Mathematics::Differential Geometry 010307 mathematical physics Soliton Uniqueness Sectional curvature 0101 mathematics Convex function Mathematics |
Zdroj: | Inventiones mathematicae. 217:35-76 |
ISSN: | 1432-1297 0020-9910 |
DOI: | 10.1007/s00222-019-00859-4 |
Popis: | A well-known question of Perelman concerns the classification of noncompact ancient solutions to the Ricci flow in dimension 3 which have positive sectional curvature and are $$\kappa $$ -noncollapsed. In this paper, we solve the analogous problem for mean curvature flow in $${\mathbb {R}}^3$$ , and prove that the rotationally symmetric bowl soliton is the only noncompact ancient solution of mean curvature flow in $${\mathbb {R}}^3$$ which is strictly convex and noncollapsed. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |