Uniqueness of convex ancient solutions to mean curvature flow in $${\mathbb {R}}^3$$ R 3

Autor: Kyeongsu Choi, Simon Brendle
Rok vydání: 2019
Předmět:
Zdroj: Inventiones mathematicae. 217:35-76
ISSN: 1432-1297
0020-9910
DOI: 10.1007/s00222-019-00859-4
Popis: A well-known question of Perelman concerns the classification of noncompact ancient solutions to the Ricci flow in dimension 3 which have positive sectional curvature and are $$\kappa $$ -noncollapsed. In this paper, we solve the analogous problem for mean curvature flow in $${\mathbb {R}}^3$$ , and prove that the rotationally symmetric bowl soliton is the only noncompact ancient solution of mean curvature flow in $${\mathbb {R}}^3$$ which is strictly convex and noncollapsed.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje