Dislocation densities and lengths in solid4He from elasticity measurements
Autor: | Sébastien Balibar, Ariel Haziot, John Beamish, Andrew Fefferman |
---|---|
Rok vydání: | 2013 |
Předmět: | |
Zdroj: | Physical Review B. 87 |
ISSN: | 1550-235X 1098-0121 |
DOI: | 10.1103/physrevb.87.060509 |
Popis: | Measurements on solid ${}^{4}$He show large softening of the shear modulus due to dislocations, behavior which has been described as giant plasticity. Dislocation networks may also be responsible for the unusual behavior seen in torsional oscillator and flow experiments. However, previous estimates of dislocation densities vary by many orders of magnitude, even in single crystals grown under similar conditions. By measuring the temperature and frequency dependencies of the elastic dissipation, we have determined dislocation densities and network lengths in ${}^{4}$He single crystals, both in coexistence with liquid and at higher pressures, and in polycrystals grown at constant density. In all cases, dislocation lengths are much longer and the networks are less connected than previous estimates. Even in polycrystals, the dislocation network is far too sparse to explain the torsional oscillator results in terms of superfluidity in a dislocation network. |
Databáze: | OpenAIRE |
Externí odkaz: |