The Normalizer Property for Integral Group Rings of Holomorphs of Finite Groups with Trivial Center
Autor: | Jin Ke Hai, Yi Xin Zhu |
---|---|
Rok vydání: | 2020 |
Předmět: |
Finite group
Applied Mathematics General Mathematics 010102 general mathematics HOL 0102 computer and information sciences Center (group theory) Automorphism 01 natural sciences Centralizer and normalizer Prime (order theory) Combinatorics 010201 computation theory & mathematics Holomorph 0101 mathematics Group ring Mathematics |
Zdroj: | Acta Mathematica Sinica, English Series. 36:401-406 |
ISSN: | 1439-7617 1439-8516 |
DOI: | 10.1007/s10114-020-7407-8 |
Popis: | Let G = Hol(H) be the holomorph of a finite group H. If there is a prime q dividing ⋎H⋎ such that every q-central automorphism of H is inner and Z(H) = 1, then every Coleman automorphism of G is inner. In particular, the normalizer property holds for G. |
Databáze: | OpenAIRE |
Externí odkaz: |