Ricci and scalar curvatures of submanifolds of a conformal Sasakian space form
Autor: | Mukut Mani Tripathi, Reyhane Bahrami Ziabari, Esmaeil Abedi |
---|---|
Rok vydání: | 2016 |
Předmět: |
Pure mathematics
Riemann curvature tensor Mean curvature General Mathematics Prescribed scalar curvature problem Mathematical analysis Curvature Sasakian manifold symbols.namesake symbols Mathematics::Differential Geometry Sectional curvature Mathematics::Symplectic Geometry Ricci curvature Mathematics Scalar curvature |
Zdroj: | Archivum Mathematicum. :113-130 |
ISSN: | 1212-5059 0044-8753 |
DOI: | 10.5817/am2016-2-113 |
Popis: | We introduce a conformal Sasakian manifold and we find the inequality involving Ricci curvature and the squared mean curvature for semi-invariant, almost semi-invariant, $\theta $-slant, invariant and anti-invariant submanifolds tangent to the Reeb vector field and the equality cases are also discussed. Also the inequality involving scalar curvature and the squared mean curvature of some submanifolds of a conformal Sasakian space form are obtained. |
Databáze: | OpenAIRE |
Externí odkaz: |