First results on laboratory nano-CT with a needle reflection target and an adapted toolchain
Autor: | Kilian Dremel, Simon Zabler, Randolf Hanke, A. Hoelzing, Jonas Dittmann, J. M. Engel, Philipp Stahlhut |
---|---|
Rok vydání: | 2016 |
Předmět: |
010302 applied physics
Materials science business.industry Scanning electron microscope Detector Image processing 02 engineering and technology Iterative reconstruction 021001 nanoscience & nanotechnology 01 natural sciences Photon counting Reflection (mathematics) Optics 0103 physical sciences Microscopy 0210 nano-technology business Image resolution |
Zdroj: | SPIE Proceedings. |
ISSN: | 0277-786X |
Popis: | Recently, we introduced a nano Computed Tomography (nano-CT) system based on a customized JEOL scanning electron microscope applying the principle of shadow microscopy and yielding a spatial resolution of approximately 3000lp/mm. The system has been upgraded and now comprises a photon counting PIXIRAD-2 detector as well as a customized nano-positioning stage for object and electron target. The latter is a tungsten needle with a tip radius of 100nm produced by electrochemical etching. Here we present for the first time nano-CT volume images of microstructures within an AlCu29 sample recorded by the upgraded system (XRM-II). The quality of the iteratively reconstructed and regularized volumes is assessed by means of detail visibility and line spread. We found the spatial resolution to be at least 300nm. The image processing chain, in particular geometric misalignment correction is of critical importance for a successful nano-CT measurement with the XRM-II. |
Databáze: | OpenAIRE |
Externí odkaz: |