Fast Multi-Objective CMODE-Type Optimization of PM Machines Using Multicore Desktop Computers
Autor: | A. Fatemi, Nabeel A. O. Demerdash, Nehl Thomas W, Dan M. Ionel |
---|---|
Rok vydání: | 2016 |
Předmět: |
Continuous optimization
Mathematical optimization Meta-optimization Computer science Probabilistic-based design optimization 020208 electrical & electronic engineering 05 social sciences 02 engineering and technology Multi-objective optimization Industrial and Manufacturing Engineering Engineering optimization Control and Systems Engineering Discrete optimization 0202 electrical engineering electronic engineering information engineering 0501 psychology and cognitive sciences Electrical and Electronic Engineering Multi-swarm optimization Metaheuristic 050107 human factors |
Zdroj: | IEEE Transactions on Industry Applications. 52:2941-2950 |
ISSN: | 1939-9367 0093-9994 |
DOI: | 10.1109/tia.2016.2542125 |
Popis: | Large-scale design optimization of electric machines is oftentimes practiced to achieve a set of objectives, such as the minimization of cost and power loss, under a set of constraints, such as maximum permissible torque ripple. Accordingly, the design optimization of electric machines can be regarded as a constrained optimization problem (COP). Evolutionary algorithms (EAs) used in the design optimization of electric machines including differential evolution (DE), which has received considerable attention during recent years, are unconstrained optimization methods that need additional mechanisms to handle COPs. In this paper, a new optimization algorithm that features combined multi-objective optimization with differential evolution (CMODE) has been developed and implemented in the design optimization of electric machines. A thorough comparison is conducted between the two counterpart optimization algorithms, CMODE and DE, to demonstrate CMODE’s superiority in terms of convergence rate, diversity and high definition of the resulting Pareto fronts, and its more effective constraint handling. More importantly, CMODE requires a lesser number of simultaneous processing units which makes its implementation best suited for state-of-the-art desktop computers reducing the need for high-performance computing systems and associated software licenses. |
Databáze: | OpenAIRE |
Externí odkaz: |