Proper -colorings of are Bernoulli
Autor: | GOURAB RAY, YINON SPINKA |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Ergodic Theory and Dynamical Systems. 43:2002-2027 |
ISSN: | 1469-4417 0143-3857 |
DOI: | 10.1017/etds.2021.160 |
Popis: | We consider the unique measure of maximal entropy for proper 3-colorings of $\mathbb {Z}^{2}$ , or equivalently, the so-called zero-slope Gibbs measure. Our main result is that this measure is Bernoulli, or equivalently, that it can be expressed as the image of a translation-equivariant function of independent and identically distributed random variables placed on $\mathbb {Z}^{2}$ . Along the way, we obtain various estimates on the mixing properties of this measure. |
Databáze: | OpenAIRE |
Externí odkaz: |