On the best mean-square approximation of a real nonnegative finite continuous function of two variables by the modulus of a double Fourier integral. I

Autor: P. O. Savenko, M. D. Tkach, L. P. Protsakh
Rok vydání: 2009
Předmět:
Zdroj: Journal of Mathematical Sciences. 160:343-356
ISSN: 1573-8795
1072-3374
DOI: 10.1007/s10958-009-9502-3
Popis: We study the nonlinear problem of mean-square approximation of a real finite nonnegative continuous function of two variables by the modulus of a double Fourier integral depending on two parameters. The solution of this problem is reduced to the solution of a nonlinear two-dimensional integral equation of the Hammerstein type. Numerical algorithms for determination of branching lines and branched solutions of equation are constructed and substantiated. Some numerical examples are given.
Databáze: OpenAIRE