On the best mean-square approximation of a real nonnegative finite continuous function of two variables by the modulus of a double Fourier integral. I
Autor: | P. O. Savenko, M. D. Tkach, L. P. Protsakh |
---|---|
Rok vydání: | 2009 |
Předmět: | |
Zdroj: | Journal of Mathematical Sciences. 160:343-356 |
ISSN: | 1573-8795 1072-3374 |
DOI: | 10.1007/s10958-009-9502-3 |
Popis: | We study the nonlinear problem of mean-square approximation of a real finite nonnegative continuous function of two variables by the modulus of a double Fourier integral depending on two parameters. The solution of this problem is reduced to the solution of a nonlinear two-dimensional integral equation of the Hammerstein type. Numerical algorithms for determination of branching lines and branched solutions of equation are constructed and substantiated. Some numerical examples are given. |
Databáze: | OpenAIRE |
Externí odkaz: |