Low-voltage artificial neuron using feedback engineered insulator-to-metal-transition devices

Autor: Shriram Ramanathan, Liliana Stan, K.V.L.V Achari, Annadi, Jianqiang Lin, Sushant Sonde, Changyao Chen, Supratik Guha
Rok vydání: 2016
Předmět:
Zdroj: 2016 IEEE International Electron Devices Meeting (IEDM).
DOI: 10.1109/iedm.2016.7838541
Popis: We demonstrate a solid-state spiking artificial neuron based upon an insulator-to-metal (IMT) transition material element that operates at an unprecedented low voltage (0.8 V). We have developed a general coupled electrical-thermal device model for IMT based devices to accurately predict experimental outcomes. From the experiment and simulation, we show that voltage scalability to sub 0.3 V is possible by scaling of the IMT based neuron.
Databáze: OpenAIRE