Error Estimates of the Finite Element Method with Weighted Basis Functions for a Singularly Perturbed Convection-Diffusion Equation

Autor: Xijun Yu, Xiang-Gui Li, Guang-Nan Chen
Rok vydání: 2011
Předmět:
Zdroj: Journal of Computational Mathematics. 29:227-242
ISSN: 1991-7139
0254-9409
DOI: 10.4208/jcm.1009-m3113
Popis: In this paper, we establish a convergence theory for a finite element method with weighted basis functions for solving singularly perturbed convection-diffusion equations. The stability of this finite element method is proved and an upper bound O(h|ln"| 3/2 ) for errors in the approximate solutions in the energy norm is obtained on the triangular Bakhvalov-type mesh. Numerical results are presented to verify the stability and the convergent rate of this finite element method.
Databáze: OpenAIRE