Error Estimates of the Finite Element Method with Weighted Basis Functions for a Singularly Perturbed Convection-Diffusion Equation
Autor: | Xijun Yu, Xiang-Gui Li, Guang-Nan Chen |
---|---|
Rok vydání: | 2011 |
Předmět: | |
Zdroj: | Journal of Computational Mathematics. 29:227-242 |
ISSN: | 1991-7139 0254-9409 |
DOI: | 10.4208/jcm.1009-m3113 |
Popis: | In this paper, we establish a convergence theory for a finite element method with weighted basis functions for solving singularly perturbed convection-diffusion equations. The stability of this finite element method is proved and an upper bound O(h|ln"| 3/2 ) for errors in the approximate solutions in the energy norm is obtained on the triangular Bakhvalov-type mesh. Numerical results are presented to verify the stability and the convergent rate of this finite element method. |
Databáze: | OpenAIRE |
Externí odkaz: |