An analytical approximation of a pendulum trajectory

Autor: G. Ares de Parga, Encarnación Salinas-Hernández, S. Domínguez-Hernández, R. Muñoz-Vega
Rok vydání: 2014
Předmět:
Zdroj: European Journal of Physics. 35:045027
ISSN: 1361-6404
0143-0807
DOI: 10.1088/0143-0807/35/4/045027
Popis: An analytical approximation of a pendulum trajectory is developed for large initial angles. Instead of using a perturbation method, a succession of just two polynomials is used in order to get simple integrals. By obtaining the approximated period, the result is compared with the Kidd–Frogg and Hite formulas for the period which are very close to the exact solution for the considered angle.
Databáze: OpenAIRE