An analytical approximation of a pendulum trajectory
Autor: | G. Ares de Parga, Encarnación Salinas-Hernández, S. Domínguez-Hernández, R. Muñoz-Vega |
---|---|
Rok vydání: | 2014 |
Předmět: | |
Zdroj: | European Journal of Physics. 35:045027 |
ISSN: | 1361-6404 0143-0807 |
DOI: | 10.1088/0143-0807/35/4/045027 |
Popis: | An analytical approximation of a pendulum trajectory is developed for large initial angles. Instead of using a perturbation method, a succession of just two polynomials is used in order to get simple integrals. By obtaining the approximated period, the result is compared with the Kidd–Frogg and Hite formulas for the period which are very close to the exact solution for the considered angle. |
Databáze: | OpenAIRE |
Externí odkaz: |