A Posteriori Error Estimates for Pressure-Correction Schemes
Autor: | Eberhard Bänsch, Andreas Brenner |
---|---|
Rok vydání: | 2016 |
Předmět: |
Numerical Analysis
Discretization Applied Mathematics Semi-implicit Euler method Mathematical analysis Estimator 010103 numerical & computational mathematics 01 natural sciences Backward Euler method 010101 applied mathematics Euler method Computational Mathematics symbols.namesake Pressure-correction method symbols Euler's formula 0101 mathematics Navier–Stokes equations Mathematics |
Zdroj: | SIAM Journal on Numerical Analysis. 54:2323-2358 |
ISSN: | 1095-7170 0036-1429 |
Popis: | A posteriori error estimates for time discretization of the incompressible Stokes equations by pressure-correction methods are presented. We rigorously prove global upper bounds for the incremental backward Euler scheme as well as for the two-step backward differential formula method (BDF2) in rotational form. Moreover, rate optimality of the estimators is stated for velocity (in the case of backward Euler and BDF2 in rotational form) and pressure (in the case of Euler). Computational experiments confirm the theoretical results. |
Databáze: | OpenAIRE |
Externí odkaz: |