Estimates for vertical points of solutions of prescribed mean curvature type equations II

Autor: James Serrin, F.V. Atkinson, L.A. Peletier
Rok vydání: 1992
Předmět:
Zdroj: Asymptotic Analysis. 5:283-310
ISSN: 0921-7134
Popis: Atkinson, F.V., L.A. Peletier and J. Serrin, Estimates for solutions of mean curvature equations, Asymptotic Analysis 5 (1992) 283-310. Radially symmetric solutions u(r) of the prescribed mean curvature equation involving a source term feu) may exhibit vertical points. In this paper we study the asymptotic properties of these vertical points when f is positive and increasing and the parameter e ~ f' /[2 becomes small. Our results are based on a sharp asymptotic estimate for Delaunay surfaces as the distance of the vertical points nearest to the symmetry axis r ~ 0 tends to zero.
Databáze: OpenAIRE