The sterochemistry at carbon 3 of pyruvate lyase condensation products. 2-Keto-3-deoxygluconate 6-phosphate and 2-keto-3-deoxygalactonate-6-phosphate aldolase of Pseudomonas saccharophila

Autor: H P Meloche, C T Monti
Rok vydání: 1975
Předmět:
Zdroj: Journal of Biological Chemistry. 250:6875-6879
ISSN: 0021-9258
Popis: In Pseudomonas saccharophila 2-keto-3-deoxygalactonate-6-P aldolase (EC 4.1.2.21) is induced by growth on galatose while 2-keto-3-deoxygluconate-6-P aldolase (EC 4.1.2.14) is constitutive. These enzymes catalyze identical reactions except for the configuration fixed at C-4 during the condensation reaction. It was found with each enzyme that in a condensation between [3-3H3]pyruvate and D-glyceraldehyde-3-P, the respective condensation products were formed 8 to 10 times faster than tritium was released to water. Since pyruvate deprotonation is obligatory for condensation, the above result requires a hydrogen isotope effect in enolpyruvate formation, which must be then at least partially rate limiting for C--C synthesis. Further, condensation between D-glyceraldehyde-3-P and (3R)-[3-3H, 2H,H]pyruvate or (3S)-[3-3H, 2H,H]pyruvate, as catalyzed by each enzyme, enriched for (3R)- and (3S)-3-3H, 2H-labeled condensation product, respectively. Thus, each enzyme catalyzes C--C and C--H synthesis with retention of configuration at C-3. This shows that the active sites of both enzymes are asymmetric since solutes can only approach a single face of the bound pyruvyl enolate. In addition, the respective aldehyde specific portions of the two active sites must have opposite chiralities, with respect to each other, for correctly orienting the carbonyl faces of the incoming D-glyceraldehyde-3-P, to generate the correct configuration at C-4 of the respective condensation products.
Databáze: OpenAIRE