Gromov’s theorem in n-symplectic geometry on LRn
Autor: | L. K. Norris |
---|---|
Rok vydání: | 2018 |
Předmět: |
Pure mathematics
010102 general mathematics Statistical and Nonlinear Physics Mathematical proof 01 natural sciences law.invention law Associated bundle 0103 physical sciences 010307 mathematical physics Affine transformation 0101 mathematics Mathematics::Symplectic Geometry Manifold (fluid mechanics) Mathematical Physics Mathematics Symplectic geometry |
Zdroj: | Journal of Mathematical Physics. 59:053509 |
ISSN: | 1089-7658 0022-2488 |
DOI: | 10.1063/1.5029474 |
Popis: | If M is an n-dimensional manifold, then the associated bundle of linear frames LM of M supports the canonically defined Rn-valued soldering 1-form θ^. The pair (LM,dθ^) is an n-symplectic manifold, where dθ^ is the n-symplectic 2-form. We adapt the proofs of de Gosson and McDuff and Salamon of Gromov’s non-squeezing theorem on R2n to give a proof of Gromov’s theorem for affine n-symplectomorphisms on LRn. |
Databáze: | OpenAIRE |
Externí odkaz: |