Ash and deposit formation from oxy-coal combustion in a 100 kW test furnace

Autor: Constance L. Senior, Raphael Erickson, William J. Morris, Jost O.L. Wendt, Andrew Fry, Dunxi Yu
Rok vydání: 2011
Předmět:
Zdroj: International Journal of Greenhouse Gas Control. 5:S159-S167
ISSN: 1750-5836
Popis: Ash deposition is still an unresolved problem when retrofitting existing air-fired coal power plants to oxy-fuel combustion. Experimental data are quite necessary for mechanism validation and model development. This work was designed to obtain laboratory combustor data on ash and deposits from oxy-coal combustion, and to explore the effects of oxy-firing on their formation. Two bituminous coals (Utah coal and Illinois coal) and one sub-bituminous coal (PRB coal) were burned on a down-fired combustor under both oxy- and air-firing. Two oxy-fired cases, i.e., 27 vol% O2/73 vol% CO2 and 32 vol% O2/68 vol% CO2, were selected to match the radiation flux and the adiabatic flame temperature of air combustion, respectively. Once-through CO2 was used to simulate fully cleaned recycled flue gas. The flue gas excess oxygen was fixed at 3 vol%. For each case, both size-segregated fly ash and bulk fly ash samples were obtained. Simultaneously, ash deposits were collected on an especially designed un-cooled deposition probe. Ash particle size distributions and chemical composition of all samples were characterized. Data showed that oxy-firing had insignificant impacts on the tri-modal ash particle size distributions and composition size distributions in the size range studied. Bulk ash compositions also showed no significant differences between oxy- and air-firing, except for slightly higher sulfur contents in some oxy-fired ashes. The oxy-fired deposits were thicker than those from air-firing, suggesting enhanced ash deposition rates in oxy-firing. Oxy-firing also had apparent impacts on the deposit composition, especially for those components (e.g., CaO, Fe2O3, SO3, etc.) that could contribute significantly to ash deposition. Based on these results, aerodynamic changes in gas flow and changes in combustion temperature seemed more important than chemical changes of ash particles in determining deposit behavior during oxy-coal combustion.
Databáze: OpenAIRE