Parkin deficiency disrupts calcium homeostasis by modulating phospholipase C signalling

Autor: Elena Karpilovski, Nodi Dehvari, Angel Cedazo-Minguez, Mark R. Cookson, Monica Perez-Manso, Richard F. Cowburn, Anna Sandebring, Kelly Jean Thomas
Rok vydání: 2009
Předmět:
Zdroj: FEBS Journal. 276:5041-5052
ISSN: 1742-464X
Popis: Mutations in the E3 ubiquitin ligase parkin cause early-onset, autosomal-recessive juvenile parkinsonism (AJRP), presumably as a result of a lack of function that alters the level, activity, aggregation or localization of its substrates. Recently, we have reported that phospholipase Cgamma1 is a substrate for parkin. In this article, we show that parkin mutants and siRNA parkin knockdown cells possess enhanced levels of phospholipase Cgamma1 phosphorylation, basal phosphoinositide hydrolysis and intracellular Ca2+ concentration. The protein levels of Ca2+-regulated protein kinase Calpha were decreased in AJRP parkin mutant cells. Neomycin and dantrolene both decreased the intracellular Ca2+ levels in parkin mutants in comparison with those seen in wild-type parkin cells, suggesting that the differences were a consequence of altered phospholipase C activity. The protection of wild-type parkin against 6-hydroxydopamine (6OHDA) toxicity was also established in ARJP mutants on pretreatment with dantrolene, implying that a balancing Ca2+ release from ryanodine-sensitive stores decreases the toxic effects of 6OHDA. Our findings suggest that parkin is an important factor for maintaining Ca2+ homeostasis and that parkin deficiency leads to a phospholipase C-dependent increase in intracellular Ca2+ levels, which make cells more vulnerable to neurotoxins, such as 6OHDA.
Databáze: OpenAIRE