A commutativity theorem for power-associative rings
Autor: | Adil Yaqub, D. L. Outcalt |
---|---|
Rok vydání: | 1970 |
Předmět: | |
Zdroj: | Bulletin of the Australian Mathematical Society. 3:75-79 |
ISSN: | 1755-1633 0004-9727 |
DOI: | 10.1017/s0004972700045676 |
Popis: | Let R be a power-associative ring with identity and let I be an ideal of R such that R/I is a finite field and x ≡ y (mod I) implies x2 = y2 or both x and y commute with all elements of I. It is proven that R must then be commutative. Examples are given to show that R need not be commutative if various parts of the hypothesis are dropped or if “x2 = y2” is replaced by “xk = yk” for any integer k > 2. |
Databáze: | OpenAIRE |
Externí odkaz: |