Deep learning neural network potential for simulating gaseous adsorption in metal–organic frameworks

Autor: Chi-Ta Yang, Ishan Pandey, Dan Trinh, Chau-Chyun Chen, Joshua D. Howe, Li-Chiang Lin
Rok vydání: 2022
Předmět:
Zdroj: Materials Advances. 3:5299-5303
ISSN: 2633-5409
Popis: This study proposes ab initio neural network force fields with physically motivated features to offer superior accuracy in describing adsorbate–adsorbent interactions of nonpolar (CO2) and polar (H2O and CO) molecules in metal–organic frameworks with open-metal sites.
Databáze: OpenAIRE