Теория Титчмарша - Вейля сингулярного уравнения Хана - Штурма - Лиувилля
Autor: | H. Tuna, B.P. Allahverdiev |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Владикавказский математический журнал. :16-26 |
ISSN: | 1814-0807 1683-3414 |
DOI: | 10.46698/y9113-7002-9720-u |
Popis: | In this work, we will consider the singular Hahn--Sturm--Liouville difference equation defined by $-q^{-1}D_{-\omega q^{-1},q^{-1}}D_{\omega ,q}y( x) +v(x) y( x) =\lambda y(x)$, $x\in (\omega _{0},\infty),$ where $\lambda$ is a complex parameter, $v$ is a real-valued continuous function at $\omega _{0}$ defined on $[\omega _{0},\infty)$. These type equations are obtained when the ordinary derivative in the classical Sturm--Liouville problem is replaced by the $\omega,q$-Hahn difference operator $D_{\omega,q}$. We develop the $\omega,q$-analogue of the classical Titchmarsh--Weyl theory for such equations. In other words, we study the existence of square-integrable solutions of the singular Hahn--Sturm--Liouville equation. Accordingly, first we define an appropriate Hilbert space in terms of Jackson--N\"{o}rlund integral and then we study families of regular Hahn--Sturm--Liouville problems on $[\omega_{0},q^{-n}]$, $n\in \mathbb{N}$. Then we define a family of circles that converge either to a point or a circle. Thus, we will define the limit-point, limit-circle cases in the Hahn calculus setting by using Titchmarsh's technique. |
Databáze: | OpenAIRE |
Externí odkaz: |