ILLUSORY MODELS OF PEANO ARITHMETIC
Autor: | Makoto Kikuchi, Taishi Kurahashi |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Zdroj: | The Journal of Symbolic Logic. 81:1163-1175 |
ISSN: | 1943-5886 0022-4812 |
Popis: | By using a provability predicate of PA, we define ThmPA(M) as the set of theorems of PA in a model M of PA. We say a model M of PA is (1) illusory if ThmPA(M) ⊈ ThmPA(ℕ), (2) heterodox if ThmPA(M) ⊈ TA, (3) sane if M ⊨ ConPA, and insane if it is not sane, (4) maximally sane if it is sane and ThmPA(M) ⊆ ThmPA(N) implies ThmPA(M) = ThmPA(N) for every sane model N of PA. We firstly show that M is heterodox if and only if it is illusory, and that ThmPA(M) ∩ TA ≠ ThmPA(ℕ) for any illusory model M. Then we show that there exists a maximally sane model, every maximally sane model satisfies ¬ConPA+ConPA, and there exists a sane model of ¬ConPA+ConPA which is not maximally sane. We define that an insane model is (5) illusory by nature if its every initial segment being a nonstandard model of PA is illusory, and (6) going insane suddenly if its every initial segment being a sane model of PA is not illusory. We show that there exists a model of PA which is illusory by nature, and we prove the existence of a model of PA which is going insane suddenly. |
Databáze: | OpenAIRE |
Externí odkaz: |