Nodal Sets for Groundstates of Schrödinger Operators with Zero Magnetic Field in Non Simply Connected Domains

Autor: M. Hoffmann-Ostenhof, Bernard Helffer, M. P. Owen, Thomas Hoffmann-Ostenhof
Rok vydání: 1999
Předmět:
Zdroj: Communications in Mathematical Physics. 202:629-649
ISSN: 1432-0916
0010-3616
DOI: 10.1007/s002200050599
Popis: We investigate nodal sets of magnetic Schroedinger operators with zero magnetic field, acting on a non simply connected domain in $\r^2$. For the case of circulation 1/2 of the magnetic vector potential around each hole in the region, we obtain a charactisation of the nodal set, and use this to obtain bounds on the multiplicity of the groundstate. For the case of one hole and a fixed electric potential, we show that the first eigenvalue takes its highest value for circulation 1/2.
Databáze: OpenAIRE