Nodal Sets for Groundstates of Schrödinger Operators with Zero Magnetic Field in Non Simply Connected Domains
Autor: | M. Hoffmann-Ostenhof, Bernard Helffer, M. P. Owen, Thomas Hoffmann-Ostenhof |
---|---|
Rok vydání: | 1999 |
Předmět: | |
Zdroj: | Communications in Mathematical Physics. 202:629-649 |
ISSN: | 1432-0916 0010-3616 |
DOI: | 10.1007/s002200050599 |
Popis: | We investigate nodal sets of magnetic Schroedinger operators with zero magnetic field, acting on a non simply connected domain in $\r^2$. For the case of circulation 1/2 of the magnetic vector potential around each hole in the region, we obtain a charactisation of the nodal set, and use this to obtain bounds on the multiplicity of the groundstate. For the case of one hole and a fixed electric potential, we show that the first eigenvalue takes its highest value for circulation 1/2. |
Databáze: | OpenAIRE |
Externí odkaz: |