The Inviscid Limit for the Navier–Stokes Equations with Data Analytic Only Near the Boundary
Autor: | Vlad Vicol, Igor Kukavica, Fei Wang |
---|---|
Rok vydání: | 2020 |
Předmět: |
Mechanical Engineering
010102 general mathematics Mathematical analysis Mathematics::Analysis of PDEs Boundary (topology) 01 natural sciences Domain (mathematical analysis) Euler equations Physics::Fluid Dynamics 010101 applied mathematics Sobolev space symbols.namesake Mathematics (miscellaneous) Inviscid flow symbols Limit (mathematics) 0101 mathematics Navier–Stokes equations Constant (mathematics) Analysis Mathematics |
Zdroj: | Archive for Rational Mechanics and Analysis. 237:779-827 |
ISSN: | 1432-0673 0003-9527 |
Popis: | We address the inviscid limit for the Navier–Stokes equations in a half space, with initial datum that is analytic only close to the boundary of the domain, and that has Sobolev regularity in the complement. We prove that for such data the solution of the Navier–Stokes equations converges in the vanishing viscosity limit to the solution of the Euler equation, on a constant time interval. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |