Nanostructured energetic materials using sol–gel methodologies
Autor: | Alexander E. Gash, Randall L. Simpson, J. H. Satcher, Lawrence W. Hrubesh, J. F. Poco, Thomas M. Tillotson |
---|---|
Rok vydání: | 2001 |
Předmět: |
Nanocomposite
Materials science Composite number Oxide Mineralogy Aerogel Condensed Matter Physics Electronic Optical and Magnetic Materials chemistry.chemical_compound chemistry Transition metal Chemical engineering Materials Chemistry Ceramics and Composites High-resolution transmission electron microscopy Thermal analysis Sol-gel |
Zdroj: | Journal of Non-Crystalline Solids. 285:338-345 |
ISSN: | 0022-3093 |
Popis: | We have utilized a sol–gel synthetic approach in preparing nano-sized transition metal oxide components for new energetic nanocomposites. Nanocomposites of Fe 2 O 3 /Al(s), are readily produced from a solution of Fe(III) salt by adding an organic epoxide and a powder of the fuel metal. These materials can be processed to aerogel or xerogel monolithic composite solids. High resolution transmission electron microscopy (HRTEM) of the dried energetic nanocomposites reveal that the metal oxide component consists of small (3–10 nm) clusters of Fe 2 O 3 that are in intimate contact with ultra fine grain (UFG) ∼25 nm diameter Al metal particles. HRTEM results also indicate that the Al particles have an oxide coating ∼5 nm thick. This value agrees well with analysis of pristine UFG Al powder and indicates that the sol–gel synthetic method and processing does not significantly perturb the fuel metal. Both qualitative and quantitative characterization has shown that these materials are indeed energetic. The materials described here are relatively insensitive to standard impact, spark, and friction tests, results of which will be presented. Qualitatively, it does appear that these energetic nanocomposites burn faster and are more sensitive to thermal ignition than their conventional counterparts and that aerogel materials are more sensitive to ignition than xerogels. We believe that the sol–gel method will at the very least provide processing advantages over conventional methods in the areas of cost, purity, homogeneity, and safety and potentially yield energetic materials with interesting and special properties. |
Databáze: | OpenAIRE |
Externí odkaz: |