Popis: |
Bovine cardiac myosin ATPase activity was rapidly inactivated by the purine disulfide analog of ATP,6,6'-dithiobis(inosinyl imidodiphosphate). Kinetic investigations showed that this analog acted as a site-specific reagent at 0 degrees with a Ki of 130 muM and a half-life of 8.2 min at saturating inhibitor concentrations. Concentrations (50 to 500 muM) of ATP, adenyl-5'-yl imidodiphosphate (AMP-PNP), or ADP that saturated the active site caused an enhancement in the rate of inactivation, indicating the purine disulfide analog was not reacting at the active site. Under these conditions saturation kinetic data were still observed with Ki values remaining unchanged (120 muM) but with the half-life of inactivation decreasing to 6.0 min (ATP) and 4.6 min (AMP-PNP) at saturating inhibitor concentrations. At concentrations greater than 0.5 mM ATP, AMP-PNP, or ADP there was a decrease in the rate of inactivation, implying protection by these nucleotides. However, saturation kinetics of inactivation could no longer be demonstrated, implying a change in the mechanism of inactivation. A comparison of the inactivation of the Mg2+, Ca2+, and EDTA-ATPase activities of cardiac myosin after modification by the purine disulfide analog showed that the Mg2+- and Ca2+ATPase activities plateaued at approximately 60% and 40%, respectively, while the EDTA-ATPase activity continued to decrease to below 10%. This evidence supports the suggestion that the purine disulfide analog was not reacting at the active site. Equilibrium dialysis experiments were used to measure the binding of [8-3H]AMP-PNP to native cardiac myosin, the thiopurine nucleotide-modified myosin, and the derivative formed by displacing the thiopurine nucleotide by cyanide (thiocyanato-myosin). Native myosin bound a total of 2.1 mol of AMP-PNP with a binding constant of 6.0 X 10(6) M-1. There was a 15 to 40% decrease in the number of AMP-PNP binding sites in the enzyme derivatives, but the active sites appeared not to be blocked since the association constants remained essentially unchanged (KA=3.9 X 10(6) M-1 for thiopurine nucleotide-myosin and 12.0 X 10(6) M-1 for thiocyanato-myosin). The kinetic studies and the binding experiments indicate that the purine disulfide analog reacts at a specific site other than the active site but do not offer support to earlier suggestions from skeletal myosin studies that this site is a possible ATP control site. |