Zero-Density Estimates for Epstein Zeta Functions*

Autor: Steven M. Gonek, Yoonbok Lee
Rok vydání: 2016
Předmět:
Zdroj: The Quarterly Journal of Mathematics. 68:301-344
ISSN: 1464-3847
0033-5606
DOI: 10.1093/qmath/haw041
Popis: We investigate the zeros of Epstein zeta functions associated with a positive definite quadratic form with rational coefficients in the vertical strip $\sigma_\mathit1\mathit \il \mathfrak Rs\mathit \lt \sigma_\mathit2$ , where $1/2\lt \sigma_1\lt \sigma_2 \lt$ . When the class number of the quadratic form is bigger than 1, Voronin gives a lower bound and Lee gives an asymptotic formula for the number of zeros. In this paper, we improve their results by providing a new upper bound for the error term.
Databáze: OpenAIRE