Zero-Density Estimates for Epstein Zeta Functions*
Autor: | Steven M. Gonek, Yoonbok Lee |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Zdroj: | The Quarterly Journal of Mathematics. 68:301-344 |
ISSN: | 1464-3847 0033-5606 |
DOI: | 10.1093/qmath/haw041 |
Popis: | We investigate the zeros of Epstein zeta functions associated with a positive definite quadratic form with rational coefficients in the vertical strip $\sigma_\mathit1\mathit \il \mathfrak Rs\mathit \lt \sigma_\mathit2$ , where $1/2\lt \sigma_1\lt \sigma_2 \lt$ . When the class number of the quadratic form is bigger than 1, Voronin gives a lower bound and Lee gives an asymptotic formula for the number of zeros. In this paper, we improve their results by providing a new upper bound for the error term. |
Databáze: | OpenAIRE |
Externí odkaz: |