Popis: |
To autonomously carry out complex mobile manipulation tasks, a robot control system has to integrate several components for perception, world modeling, action planning and replanning, navigation, and manipulation. In this paper, we present a modular framework that is based on the Temporal Fast Downward Planner and supports external modules to control the robot. This allows to tightly integrate individual sub-systems with the high-level symbolic planner and enables a humanoid robot to solve challenging mobile manipulation tasks. In the work presented here, we address mobile manipulation with humanoids in cluttered environments, particularly the task of collecting objects and delivering them to designated places in a home-like environment while clearing obstacles out of the way. We implemented our system for a Nao humanoid tidying up a room, i.e., the robot has to collect items scattered on the floor, move obstacles out of its way, and deliver the objects to designated target locations. Despite the limited sensing and motion capabilities of the low-cost platform, the experiments show that our approach results in reliable task execution by applying monitoring actions to verify object and robot states. |