A Landau–Ginzburg/Calabi–Yau correspondence for the mirror quintic

Autor: Nathan Priddis, Mark Shoemaker
Rok vydání: 2016
Předmět:
Zdroj: Annales de l'Institut Fourier. 66:1045-1091
ISSN: 1777-5310
Popis: We prove a version of the Landau-Ginzburg/Calabi-Yau correspondence for the mirror quintic. In particular we calculate the genus-zero FJRW theory for the pair (W, G) where W is the Fermat quintic polynomial and G = SL(W). We identify it with the Gromov-Witten theory of the mirror quintic three-fold via an explicit analytic continuation and symplectic transformation. In the process we prove a mirror theorem for the corresponding Landau-Ginzburg model (W,G).
Databáze: OpenAIRE