A Landau–Ginzburg/Calabi–Yau correspondence for the mirror quintic
Autor: | Nathan Priddis, Mark Shoemaker |
---|---|
Rok vydání: | 2016 |
Předmět: |
Fermat's Last Theorem
Algebra and Number Theory 010308 nuclear & particles physics Analytic continuation 010102 general mathematics Duality (optimization) 01 natural sciences Quintic function Mathematics::Algebraic Geometry Transformation (function) 0103 physical sciences Calabi–Yau manifold Geometry and Topology 0101 mathematics Mirror symmetry Nonlinear Sciences::Pattern Formation and Solitons Mathematics::Symplectic Geometry Mathematics Mathematical physics Symplectic geometry |
Zdroj: | Annales de l'Institut Fourier. 66:1045-1091 |
ISSN: | 1777-5310 |
Popis: | We prove a version of the Landau-Ginzburg/Calabi-Yau correspondence for the mirror quintic. In particular we calculate the genus-zero FJRW theory for the pair (W, G) where W is the Fermat quintic polynomial and G = SL(W). We identify it with the Gromov-Witten theory of the mirror quintic three-fold via an explicit analytic continuation and symplectic transformation. In the process we prove a mirror theorem for the corresponding Landau-Ginzburg model (W,G). |
Databáze: | OpenAIRE |
Externí odkaz: |