A Study for Missing Values in PINAR(1)TProcesses

Autor: Haixiang Zhang, Boting Jia, Dehui Wang
Rok vydání: 2014
Předmět:
Zdroj: Communications in Statistics - Theory and Methods. 43:4780-4789
ISSN: 1532-415X
0361-0926
DOI: 10.1080/03610926.2012.717664
Popis: In this paper, we propose several approaches to estimate the parameters of the periodic first-order integer-valued autoregressive process with period T (PINAR(1)T) in the presence of missing data. By using incomplete data, we propose two approaches that are based on the conditional expectation and conditional likelihood to estimate the parameters of interest. Then we study three kinds of imputation methods for the missing data. The performances of these approaches are compared via simulations.
Databáze: OpenAIRE