Cantor Laminations and Exceptional Minimal Sets in Codimension One Foliations
Autor: | Gilbert Hector |
---|---|
Rok vydání: | 2014 |
Předmět: | |
Zdroj: | Springer Proceedings in Mathematics & Statistics ISBN: 9783319046747 |
DOI: | 10.1007/978-3-319-04675-4_3 |
Popis: | In this paper we deal with two types of questions concerning the structure of foliations (or laminations) on compact spaces: 1. Describe generic properties of foliations and laminations and refine the known ones, 2. Discuss the embeddability of n-dimensional minimal Cantor laminations as minimal sets in codimension one foliations on compact (n + 1)-manifolds or as closed sets in \({\mathbb{R}}^{n+1}\) (or any simply connected (n + 1)-manifold). |
Databáze: | OpenAIRE |
Externí odkaz: |