On Hecke Theory for Hermitian Modular Forms

Autor: Adrian Hauffe-Waschbüsch, Aloys Krieg
Rok vydání: 2020
Předmět:
Zdroj: Springer Proceedings in Mathematics & Statistics ISBN: 9789811587184
DOI: 10.1007/978-981-15-8719-1_6
Popis: In this paper, we outline the Hecke theory for Hermitian modular forms in the sense of Hel Braun for arbitrary class number of the attached imaginary-quadratic number field. The Hecke algebra turns out to be commutative. Its inert part has a structure analogous to the case of the Siegel modular group and coincides with the tensor product of its p-components for inert primes p. This leads to a characterization of the associated Siegel-Eisenstein series. The proof also involves Hecke theory for particular congruence subgroups.
Databáze: OpenAIRE