On Hecke Theory for Hermitian Modular Forms
Autor: | Adrian Hauffe-Waschbüsch, Aloys Krieg |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Springer Proceedings in Mathematics & Statistics ISBN: 9789811587184 |
DOI: | 10.1007/978-981-15-8719-1_6 |
Popis: | In this paper, we outline the Hecke theory for Hermitian modular forms in the sense of Hel Braun for arbitrary class number of the attached imaginary-quadratic number field. The Hecke algebra turns out to be commutative. Its inert part has a structure analogous to the case of the Siegel modular group and coincides with the tensor product of its p-components for inert primes p. This leads to a characterization of the associated Siegel-Eisenstein series. The proof also involves Hecke theory for particular congruence subgroups. |
Databáze: | OpenAIRE |
Externí odkaz: |