Full friendly index set — I

Autor: Deepa Sinha, Jaspreet Kaur
Rok vydání: 2013
Předmět:
Zdroj: Discrete Applied Mathematics. 161:1262-1274
ISSN: 0166-218X
DOI: 10.1016/j.dam.2012.10.028
Popis: Let G=(V,E) be a graph, a vertex labeling f:V->Z"2 induces an edge labeling f^*:E->Z"2 defined by f^*(xy)=f(x)+f(y) for each [email protected]?E. For each, [email protected]?Z"2 define v"f(i)=|f^-^1(i)| and e"f(i)=|f^*^-^1(i)|. We call f friendly if |v"f(1)-v"f(0)|@?1. The full friendly index set of G is the set of all possible values of e"f(1)-e"f(0), where f is friendly. In this paper, we study the full friendly index sets of some standard graphs such as the complete graph K"n, the cycle C"n, fans F"m and F"2","m and the Cartesian product of P"3 and P"n i.e. P"3xP"n.
Databáze: OpenAIRE