A New Family of Triangulations of ℝPd

Autor: Lorenzo Venturello, Hailun Zheng
Rok vydání: 2020
Předmět:
Zdroj: Combinatorica. 41:127-146
ISSN: 1439-6912
0209-9683
Popis: We construct a family of PL triangulations of the d-dimensional real projective space ℝPd on $$\Theta \left( {{{\left( {\tfrac{{1 + \sqrt 5 }}{2}} \right)}^{d + 1}}} \right)$$ vertices for every $$d \geqslant 1$$ . This improves a construction due to Kuhnel on 2d+1 -1 vertices.
Databáze: OpenAIRE