A New Family of Triangulations of ℝPd
Autor: | Lorenzo Venturello, Hailun Zheng |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Combinatorica. 41:127-146 |
ISSN: | 1439-6912 0209-9683 |
Popis: | We construct a family of PL triangulations of the d-dimensional real projective space ℝPd on $$\Theta \left( {{{\left( {\tfrac{{1 + \sqrt 5 }}{2}} \right)}^{d + 1}}} \right)$$ vertices for every $$d \geqslant 1$$ . This improves a construction due to Kuhnel on 2d+1 -1 vertices. |
Databáze: | OpenAIRE |
Externí odkaz: |