Active learning of chemical reaction networks via probabilistic graphical models and Boolean reaction circuits

Autor: Maximilian Cohen, Tejas Goculdas, Dionisios G. Vlachos
Rok vydání: 2023
Předmět:
Zdroj: Reaction Chemistry & Engineering. 8:824-837
ISSN: 2058-9883
DOI: 10.1039/d2re00315e
Popis: Reaction networks are identified with active learning design of experiments using Bayesian statistics and Boolean principles in a generalizable methodology.
Databáze: OpenAIRE