New Hex Patterns for Fill and Prune
Autor: | Ryan B. Hayward, Nicolas Fabiano |
---|---|
Rok vydání: | 2020 |
Předmět: |
Combinatorics
050101 languages & linguistics Position (vector) 05 social sciences 0202 electrical engineering electronic engineering information engineering 020201 artificial intelligence & image processing 0501 psychology and cognitive sciences Reversing 02 engineering and technology Minimax Value (mathematics) Mathematics |
Zdroj: | Lecture Notes in Computer Science ISBN: 9783030658823 ACG |
DOI: | 10.1007/978-3-030-65883-0_7 |
Popis: | For a position in the game of Hex, a fill pattern is a sub-position with one or more empty cells that can be filled without changing the position’s minimax value. A cell is prunable if it can be ignored when searching for a winning move. We introduce two new kinds of Hex fill – mutual and near-dead – and some resulting fill patterns; we show four new permanently-inferior fill patterns; and we present three new prune results, based on strong-reversing, reversing, and game-history respectively. Experiments show these results slightly reducing solving time on 8\(\,\times \,\)8 openings. |
Databáze: | OpenAIRE |
Externí odkaz: |