A Global Enhanced Vibrational Kinetic Model for High-Pressure Hydrogen RF Discharges

Autor: Lynn Olson, Sergey Averkin, Nikolaos A. Gatsonis
Rok vydání: 2015
Předmět:
Zdroj: IEEE Transactions on Plasma Science. 43:1926-1943
ISSN: 1939-9375
0093-3813
DOI: 10.1109/tps.2015.2429313
Popis: A global enhanced vibrational kinetic model (GEVKM) is developed for multitemperature, chemically reacting hydrogen plasmas in inductively coupled cylindrical discharges for lowto high-pressure regimes. The species in a GEVKM are ground-state hydrogen atoms H and molecules H 2 , 14 vibrationally excited hydrogen molecules H 2 (v), v = 1 - 14, electronically excited hydrogen atoms H(2) and H(3), groundstate positive ions H + , H 2 + , and H 3 + , ground-state negative ions H - , and electrons e. The GEVKM involves volume-averaged steady-state continuity equations for the plasma species, an electron energy equation, a total energy equation, a heat transfer equation to the chamber walls, and a comprehensive set of surface and volumetric chemical processes governing vibrational and ionization kinetics of hydrogen plasmas. The GEVKM is verified and validated by comparisons with previous numerical simulations and experimental measurements of a negative hydrogen ion source in the low-pressure (20-100 mtorr), low-absorbed-power-density (0.053-0.32 W/cm 3 ) regime and of a microwave plasma reactor in the intermediate to high-pressure (1-100 torr), high-absorbed-power-density (8.26-22 W/cm 3 ) regime. The GEVKM is applied to the simulation of a high-current negative hydrogen ion source (HCNHIS). The HCNHIS consists of a high-pressure (20-65 torr) radio-frequency discharge chamber in which the main production of high-lying vibrational states of the hydrogen molecules occurs, a bypass system, and a low-pressure (0.1-0.4 torr) negative hydrogen ion production region where negative ions are generated by the dissociative attachment of low-energy electrons to rovibrationally excited hydrogen molecules. The discharge pressure and negative hydrogen ion current predicted by the GEVKM compare well with the measurements in the HCNHIS.
Databáze: OpenAIRE