Steinhaus Conditions for Convex Polyhedra
Autor: | Joël Rouyer |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Zdroj: | Convexity and Discrete Geometry Including Graph Theory ISBN: 9783319281841 |
DOI: | 10.1007/978-3-319-28186-5_7 |
Popis: | On a convex surface S, the antipodal map F associates to any point p in S the set of farthest points from p, with respect to the intrinsic metric. S is called a Steinhaus surface if F is a single-valued involution. We prove that any convex polyhedron has an open and dense set of points p admitting a unique antipode \(F_{p}\), which in turn admits a unique antipode \(F_{F_{p}}\), distinct from p. In particular, no convex polyhedron is Steinhaus. |
Databáze: | OpenAIRE |
Externí odkaz: |