Effect of carbon on the density, microstructure and hardness of alloys formed by mechanical alloying

Autor: Enrique Rocha-Rangel, Lucía Téllez-Jurado, José Federico Chávez-Alcalá, Wilbert David Wong-Ángel, Elizabeth Chavira-Martínez
Rok vydání: 2014
Předmět:
Zdroj: Materials & Design. 60:605-611
ISSN: 0261-3069
Popis: This work aimed to produce iron-based alloys containing resistant microstructures to improve the mechanical properties of the resulting alloy. The effects of both carbon content and compaction pressure on the microstructure, density and hardness of the alloys were examined. Iron-based alloys with initial carbon contents of 0.5%, 1%, 2% and 3% were produced by powder metallurgy following a process that involved ball milling elemental powders, cold pressing and sintering. The composition, density, microstructure, porosity, hardness and ductility of the alloys depended on both compaction pressure and carbon content. As the carbon content increased, the amount of the resistant microstructure bainite in the alloys also increased, as did their hardness. In contrast, the density and ductility of the alloys decreased with increasing carbon content. This study shows that formation of the resistant microstructure bainite in alloys fabricated by powder metallurgy is influenced by both the initial carbon content of the alloy and compaction pressure during cold pressing.
Databáze: OpenAIRE