The square negative correlation property on $$\ell_p^n$$ ℓ p n - balls

Autor: David Alonso-Gutiérrez, Julio Bernués
Rok vydání: 2019
Předmět:
Zdroj: Israel Journal of Mathematics. 230:895-917
ISSN: 1565-8511
0021-2172
DOI: 10.1007/s11856-019-1840-3
Popis: In this paper we prove that for any p ∈ [2,∞) the $$\ell_p^n$$ unit ball, $$B_p^n$$ , satisfies the square negative correlation property with respect to every orthonormal basis, while we show it is not always the case for 1 ≤ p ≤ 2. In order to do that we regard $$B_p^n$$ as the orthogonal projection of $$B_p^{n+1}$$ onto the hyperplane $$e_{n+1}^\perp$$ . We will also study the orthogonal projection of $$B_p^n$$ onto the hyperplane orthogonal to the diagonal vector (1, …, 1). In this case, the property holds for all p ≥ 1 and n large enough.
Databáze: OpenAIRE