Effective multi-dialectal arabic POS tagging

Autor: Llu'is Màrquez, Hamdy Mubarak, Ahmed Abdelali, Mohammed Attia, Laura Kallmeyer, Mohamed Eldesouki, Younes Samih, Kareem Darwish
Rok vydání: 2020
Předmět:
Zdroj: Natural Language Engineering. 26:677-690
ISSN: 1469-8110
1351-3249
Popis: This work introduces robust multi-dialectal part of speech tagging trained on an annotated data set of Arabic tweets in four major dialect groups: Egyptian, Levantine, Gulf, and Maghrebi. We implement two different sequence tagging approaches. The first uses conditional random fields (CRFs), while the second combines word- and character-based representations in a deep neural network with stacked layers of convolutional and recurrent networks with a CRF output layer. We successfully exploit a variety of features that help generalize our models, such as Brown clusters and stem templates. Also, we develop robust joint models that tag multi-dialectal tweets and outperform uni-dialectal taggers. We achieve a combined accuracy of 92.4% across all dialects, with per dialect results ranging between 90.2% and 95.4%. We obtained the results using a train/dev/test split of 70/10/20 for a data set of 350 tweets per dialect.
Databáze: OpenAIRE