Near-ring congruences on additively regular seminearrings
Autor: | Sujit Kumar Sardar, Pavel Pal, Kamalika Chakraborty |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Semigroup Forum. 101:285-302 |
ISSN: | 1432-2137 0037-1912 |
DOI: | 10.1007/s00233-020-10123-4 |
Popis: | In this paper we first obtain analogues of some results of LaTorre (Semigroup Forum 24(1):327–340, 1982) in the setting of additively regular seminearrings which in turn not only give rise to refinements of some important results viz. Propositions 3.16, 3.17, Theorem 3.20 of Sardar and Mukherjee (Semigroup Forum 93(3):629–631, 2016) and Theorem 3.22 of Sardar and Mukherjee (Semigroup Forum 88(3):541–554, 2014) (involving mainly near-ring congruences i.e., normal congruences and normal full k-ideals of additively inverse seminearrings) but also answer partially a question raised in Sardar and Mukherjee (Semigroup Forum 88(3):541–554, 2014). Finally we study the lattice structures of near-ring congruences and normal full k-ideals in distributively generated additively regular seminearrings. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |