Medium-Term Prediction of Relativistic Electron Fluxes in a Geostationary Orbit Using Machine Learning Methods Based on Observations of Solar Coronal Holes
Autor: | Yu. S. Shugai, Vladimir Kalegaev, Irina Myagkova, V. A. Kolmogorova, Sergey Dolenko |
---|---|
Rok vydání: | 2020 |
Předmět: |
010504 meteorology & atmospheric sciences
Astrophysics::High Energy Astrophysical Phenomena Coronal hole Electron medicine.disease_cause 01 natural sciences symbols.namesake Observatory 0103 physical sciences medicine Astrophysics::Solar and Stellar Astrophysics 010303 astronomy & astrophysics Physics::Atmospheric and Oceanic Physics 0105 earth and related environmental sciences Physics Computational physics Solar wind Geophysics Space and Planetary Science Van Allen radiation belt Physics::Space Physics Geostationary orbit symbols Astrophysics::Earth and Planetary Astrophysics Orbit (control theory) Ultraviolet |
Zdroj: | Geomagnetism and Aeronomy. 60:279-288 |
ISSN: | 1555-645X 0016-7932 |
DOI: | 10.1134/s0016793220030123 |
Popis: | The paper proposes a model for predicting the integral daily fluxes (fluences) of relativistic electrons (RE) (E > 2 MeV) of the Earth's outer radiation belt in a geostationary orbit using images of the Sun in the ultraviolet range. The results show that the accuracy of the forecast of the RE fluxes three or four days ahead increases significantly when adding the predicted values of solar wind speed at the Earth’s orbit, obtained by processing images of the Sun in the UV range from AIA instrument, SDO Observatory, to the input parameters of the forecasting model. |
Databáze: | OpenAIRE |
Externí odkaz: |