Popis: |
Enantiomerically pure N-methyl-, N-benzyl-, and N-(methoxyethyl)-S-(phenyl)cinnamylsulfoximines as well as the corresponding crotylsulfoximines have been prepared from N-methyl-, N-benzyl-, and N-(methoxyethyl)-S-(lithiomethyl)sulfoximines and carbonyl compounds by an addition-elimination-isomerization reaction sequence. Under basic conditions, complete isomerization of the vinylic sulfoximines, obtained as intermediates, to the corresponding allylic sulfoximines takes place. Chromatographically separable mixtures of (E) and (Z) allylic sulfoximines were isolated in the case of beta,gamma-disubstituted allylic sulfoximines. The (E/Z) ratio depends on the nature of the substituents in the beta- and gamma-positions, and the equilibrium amount of the (Z) isomer varies from 68% to nil. The allylic N-methylsulfoximines do not racemize thermally, and their rearrangement to the corresponding allylic sulfinamides is negligible. Upon prolonged treatment with boron trifluoride at low temperatures allylic N-methylsulfoximines are recovered unchanged. The crystal structure of S-(3,4-dihydronaphthalen-2-ylmethyl)-N-methyl-S-phenylsulfoximine was determined. Reaction of the allylic sulfoximines with butylcopper in the presence of lithium iodide and boron trifluoride leads with very high gamma-selectivities and moderate to high enantioselectivities to the corresponding chiral alkenes. Their configuration was determined by chemical correlation through ozonolysis to the corresponding carbonyl compounds. The asymmetric induction exerted by the chiral N-methyl-S-phenylsulfoximine group strongly depends on the double bond configuration and the substituents in the beta- and gamma-positions. The (E) allylic sulfoximines are substituted with low to moderate enantioselectivities (2-66%), whereas the (Z) allylic sulfoximines react with much higher enantioselectivities (69-92%). Interestingly, substitution of the beta-methyl-gamma-phenyl-substituted (Z) allylic sulfoximine and its beta-phenyl-gamma-methyl isomer proceeded with almost the same degree of asymmetric induction but with the opposite sense. Replacement of the N-methyl group by a benzyl or a methoxyethyl group has no significant influence on the regio- and enantioselectivity of the substitution. |